END DATE FILMED (1 -8) otic # SPACE SCIENCES, INC. 135 WEST MAPLE AVENUE . MONROVIA, CALIFORNIA 91016 . [213] 357-3879 LEVEL - MASS SPECTROMETRIC STUDIES OF THE THERMAL DECOMPOSITION OF SOME AZIDO POLYMERIC BINDERS Milton/Farber and R. D. Srivastava ANNUAL SUMMARY REPORT. LANGE SA 31 Department of the Navy Office of Naval Research Arlington, Virginia 22217 Contract N00014-80-C-0711 September 1981 (1,06) OCT 2 6 1981 E Approved for public release; distribution unlimited. Reproduction in whole or in part is permitted for any purpose by the United States Government. This research was sponsored by the Office of Naval Research. 316200 81 10 26 025 SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) | REPORT DOCUMENTATION PAGE | READ INSTRUCTIONS BEFORE COMPLETING FORM | |--|--| | I | 3. RECIPIENT'S CATALOG NUMBER | | AD-ALCE | 090 | | 4. TITLE (and Subtitle) MASS SPECTROMETRIC STUDIES OF | 5. TYPE OF REPORT & PERIOD COVERED | | THE THERMAL DECOMPOSITION OF SOME AZIDO | Annual Summary | | POLYMERIC BINDERS | 1 Aug 1980 - 31 July 1981 | | l carming bindalo | 6. PERFORMING ORG. REPORT NUMBER | | | | | 7. AUTHOR(a) | 8. CONTRACT OR GRANT NUMBER(a) | | Milton Farber, R. D. Srivastava | N00014-80-C-0711 | | | | | 9. PERFORMING ORGANIZATION NAME AND ADDRESS | 10 PROGRAM EL EMENT PROJECT TASK | | Space Sciences, Inc. | 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS | | 135 W. Maple Ave. | | | Monrovia, Ca 91016 | | | 11. CONTROLLING OFFICE NAME AND ADDRESS | 12. REPORT DATE | | Office of Naval Research | September 1981 | | Code 413 | 13. NUMBER OF PAGES | | Arlington, VA 22217 | 24 | | 14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) | 15. SECURITY CLASS. (of this report) | | | UNCLASSIFIED | | | 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE | | 16. DISTRIBUTION STATEMENT (of this Report) | <u> </u> | | ' ' | | | Approved for public release; distribution unlimited. | | | | | | | į | | | | | 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from | m Report) | | | j | | | 1 | | | į | | | | | 18. SUPPLEMENTARY NOTES | | | | 1 | | | i | | | 1 | | 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) | | | 3,3,bis(azidomethyl) oxetane polymer (BAMO) | mass spectrometry | | glycidyl azide polymer (GAP) | made operations, | | azido oxetane monomer (AZOX) | į | | thermal decomposition | | | activation energies | ł | | 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) | Thermal decomposition studies | | were conducted on BAMO, GAP and AZOX. Decompos | sition was initiated at approxi- | | mately 120 C, with activation energies for the three | materials approximately | | 170 kJ/mol The primary mechanism for the decomp | position is the release of | | molecular N2. Secondary decomposition occurring at | temperatures above 150 C | | included the fracturing of the three-carbon backbone | | | the monomer. Higher decomposition temperature spe | | | and smaller amu fragments. | | | │ | | DD 1 JAN 73 1473 EDITION OF 1 NOV 68 IS OBSOLETE #### 1. INTRODUCTION During the past twelve months thermal decomposition studies were performed on several energetic azide monomers and polymers. These included 3,3,bis(azidomethyl) oxetane polymer (BAMO), glycidyl azide polymer (GAP), and azido oxetane monomer (AZOX). The materials were synthesized at various laboratories, which supplied samples: SRI International (BAMO), Edwards Air Force Base (GAP), and Fluorochem (AZOX). The monomers and polymers all begin to decompose with the release of molecular nitrogen at approximately 120 C. Their activation energies for the primary mechanism of thermal decomposition, the breaking of the azido bond, were in the neighborhood of 170 kJ mol⁻¹ (40 kcal/mole). - 2. THERMAL DECOMPOSITION STUDIES ON AZIDO MONOMERS AND POLYMERS - 2.1 Thermal Decomposition of BAMO-BDO, 3.2K The thermal decomposition of BAMO, $$H \left[O \longrightarrow CH_2 \longrightarrow C \longrightarrow (CH_2N_3)_2 \longrightarrow CH_2 \right]_n OH$$ was studied by means of weight loss and mass spectrometry. The weight loss experiments involved placement of a capsule within an alumina effusion cell, as shown in Fig. 1. The cell was maintained at a constant temperature and products were released through the orifice into the vacuum chamber via an elongated orifice for molecular beam formation. Pistribution: Availability Coles Availability Coles Special Fig. 1. Sample capsule within effusion cell with elongated orifice Weight loss experiments on 25 mg samples of BAMO were performed for periods of 3 hours each at temperatures of 82, 100, 118, 130, 135, and 202 C. These data are presented in Table 1. No apparent decomposition occurred at 80, 100 or 120 C, although at 120 C the sample turned a slightly off-white, or cream, color from its original white. Slight decomposition began at 130 C, with nearly complete decomposition at 200 C, where the rate of decomposition was 20 times that at 130 C. A 25 mg sample maintained at 200 C for three hours lost 80% of its initial mass, leaving behind a carbonaceous tar residue. The melting point of the BAMO-BDO was found to be 75 C. The release of molecular nitrogen can be seen as low as 130 C, and has a good temperature dependence above 160 C, depicted in Fig. 2., which shows the decomposition as a function of temperature quite clearly. At any given temperature the decomposition rate as a function of temperature is essentially constant, whether in a heating or cooling cycle. Figure 3 shows the decomposition of a 25 mg sample maintained at a temperature of 202 C over a two-hour period. As can be seen, for the first 1-1/2 hours the rate of N_2 evolution remains nearly constant, but as the sample becomes depleted during the last 30 minutes the N_2 concentration decays to a negligible amount. An activation energy study of the primary decomposition path, the release of N_2 from the azide groups, was also completed. Figure 4 depicts the N_2 concentration as a function of temperature, while Fig. 5 is a plot of the N_2 intensity versus the reciprocal of the absolute temperature. The E_a for the BAMO-BDO, 3.2K, was determined as 178.7 kJ mol⁻¹ (42.7 kcal/mole). From this study the primary mechanism for BAMO decomposition Table 1 Thermal Decomposition of BAMO-BDO | Appearance | No color change;
sample melted | = | Slightly off-
white | Cream colored | = | Brownish-black
char | |-------------------------------------|-----------------------------------|--------|------------------------|----------------------|----------------------|------------------------| | Rate of
Decomposition
(q/sec) | 0 | 0 | 0 | 1.2×10^{-7} | 3.5×10^{-7} | 19.1×10^{-7} | | Final Sample
Weight
(gms) | 0.0226 | 0.0226 | 0.0226 | 0.0235 | 0.0309 | 0.0045 | | Initial Sample
Weight
(gms) | 0.0226 | 0.0226 | 0.0226 | 0.0248 | 0.0347 | 0.0252 | | Experiment Duration (hours) | က | က | က | ო | Ю | က | | Temp. | 82 | 100 | 118 | 130 | 135 | 202 | Fig. 2. Thermal Decomposition of BAMO-BDO as a Function of Temperature Fig. 3. Thermal Decomposition of BAMO-BDO. A 25 mg sample was heated at a constant temperature of 202 C for 2 hours. For the first 1-1/2 hours the rate of $m N_2$ evolution was nearly constant (each line represents a time span of 1 minute). During the final 30 minutes the ${ m N}_2$ evolution showed a steady decline as the sample became depleted, Relative Intensity Fig. 4. Decomposition of BAMO-BDO as a Function of Temperature. The peaks represent the release of molecular nitrogen. (These graphs are a composite of the individual peak heights and are not continuous as a function of temperature.) Fig. 5. Relative Intensity of N_2 from the Thermal Decomposition of BAMO-BDO plotted as a Function of the Recripocal of the Absolute Temperature ($1/T^{O}K$) is the release of N_2 from the rupture of the azido bond. The three-carbon backbone of the polymer appears to remain intact initially since other gaseous species are not observed until the sample is heated to higher temperatures. In addition to molecular N_2 , the mass spectrometer showed peaks corresponding to HCN as well as peaks of amu 2, 14, 15, 16,17, and 18 which may be attributed to H_2 , CH_2 , CH_3 , O (fragment of O_2), OH and H_2O , respectively. Some low intensity peaks in the amu 40 to 46 range were also observed, indicating thermal decomposition of the hydrocarbon backbone. The temperature range of this secondary decomposition was 200 C. The intensities in Fig. 6 are only relative within the dashed lines. The intensity peaks in the 40 to 48 amu range are effusion cell reactions resulting in H, C, O, and N variations. The formation of NO_2 , for example, may require cell reactions of the following type: $$CH_2 = N \cdot + OH \longrightarrow CH_3 \cdot + NO$$ and NO + O \longrightarrow NO₂. #### 2.2 Thermal Decomposition of GAP The initial investigation of the thermal decomposition of glycidyl azide polymer, GAP $$HO \left[- GH_2 - G - O \right]_{n}^{GH_2N_3}$$ PEAK HEIGHTS ARE ONLY RELATIVE WITHIN DESIGNATED SECTIONS. Fig. 6. PRODUCTS FROM THE THERMAL DECOMPOSITION OF BAMO was a study of its primary decomposition as a function of temperature. As in the case of BAMO, the GAP appears to be fairly stable to 120 C, at which molecular N_2 is released. The results of the decomposition study of this polymer as a function of temperature is shown in Fig. 7. For a 20 C rise in temperature the rate of N_2 evolution is increased by approximately a factor of 10. In the amu range 24 to 32 the major ion intensity constituent is molecular N_2 . This appears to be the same pattern as found in the thermal decomposition of BAMO. However, at temperatures above 170 C a slight intensity of amu 27, HCN, is observed, approximately 1 to 2% of the N_2 intensity. It is likely that secondary decomposition begins at a slightly lower temperature for GAP than for BAMO. The primary decomposition mechanism for GAP is N_2 release. A plot of the log N_2 against 1/T, as shown in Fig. 8, yields an activation energy of 176.6 kJ mol⁻¹ (42.2 kcal/mole), nearly identical to the E_a of BAMO. #### 2.3 Thermal Decomposition of AZOX Monomer The thermal decomposition of azido oxetane monomer, AZOX $$H_2C - C - H$$ $$O - CH_2$$ as a function of temperature was investigated by the double boilereffusion technique. The AZOX was maintained in an ice bath and the vapor at 0 C was allowed to enter the effusion cell where it was heated to a composites of the individual peak heights and are not continuous as a function of temperature. The amu range is 24 to 32. The central peaks are molecular nitrogen. These graphs are Fig. 8. Log of the relative intensity of N_2 from the thermal decomposition of glycidyl azide polymer (GAP) plotted as a function of the reciprocal of the absolute temperature $(1/T^OK)$. Activation energy = 176.6 kJ mol⁻¹ (42.2 kcal/mole). given temperature. The molecular beam of the decomposition products was introduced into the mass spectrometer and relative intensity measurements were made. Prior to heating the AZOX a mass spectrum showed a major peak occurring at 71 amu, which is the AZOX monomer backbone after release of N_2 due to electron impact dissociation within the ionization chamber of the mass spectrometer. The monomer vapor was heated and the 24 to 32 amu range was monitored with the mass spectrometer. As can be seen in Fig. 9, the major species was N_2 , as it was in the BAMO and GAP studies. However, at temperatures above 160 C two small but prominent peaks appeared at amu 27 and 29, apparently HCN and HCO. This indicates that although the release of N_2 from the azido group is the primary decomposition mechanism, the three-carbon backbone loses stability when the azide bonds are broken. The major difference between this molecule and the BAMO and GAP moeities is that the azide groups are attached to the backbone whereas in the other two they are attached to methyl groups outside the three-carbon structure. These results agree with the findings of Dr. M. B. Frankel and colleagues. 1 A plot of the log of N_2 intensity against the reciprocal of the absolute temperature (Fig. 10) yielded an activation energy of 167.8 kJ mol⁻¹ (40.1 kcal/mole). This apparently is indicative of azide monomers, as shown in a recent publication by Isayev, et al.² They reported E_a values of 39 kcal/mole for several aliphatic azides including β -triazoethanol, 1,3, diazide propanol, 1,3, diazide propylene ester of acetic acid, and 1,3, diazide propylene acid. The amu range is 24 to 32. The central peaks are molecular nitrogen, with smaller peaks on each side of HCN at 27 amu and HCO at 29 amu. These graphs are composites of the individual peak Decomposition of AZOX monomer as a function of temperature. heights and are not continuous as a function of temperature. Fig. 9. Fig. 10. Log of the relative intensity of N_2 from the thermal decomposition of azido oxetane monomer (AZOX) plotted as a function of the reciprocal of the absolute temperature $(1/T^OK)$. Activation energy = 167.8 kJ mol⁻¹ (40.1 kcal/mole) #### REFERENCES - M. B. Frankel, E. R.Wilson, D. O. Woolery, and R. L. Kistner, Symposium on the Chemistry of Synthesis and Characterization of Energetic Monomers and Polymers, 21-22 July 1981, JHU, Laurel, Maryland. - B. M. Isayev, S. P. Kanashin, M. S. Kozhukh, and N. P. Tokarev. "Investigation of the Combustion of Certain Organic Azides," Khimicheskaya fizika protessov goreniya i vzryva. Kinetika khimicheskikh reaktsiy. Cernogovka, 1980, 97-101. (Series Note: Vsesoyuznyy simpozium po goreniyu i vzryvu, 6-th, Alma-Ata, 23-26 Sept. 1980. Materialy.) | No. | . Copies | No. Copies | |--|----------|---| | Dr. L.V. Schmidt Assistant Secretary of the Navy (R,E, and S) Room 5E 731 | 1 | Dr. F. Roberto 1
Code AFRPL MKPA
Edwards AFB, CA 93523 | | Pentagon
Washington, D.C. 20350 | | Dr. L.H. Caveny Air Force Office of Scientific | | Dr. A.L. Slafkosky
Scientific Advisor
Commandant of the Marine Corps
Code RD-1
Washington, D.C. 20380 | 1 | Research
Directorate of Aerospace Sciences
Bolling Air Force Base
Washington, D.C. 20332 | | Dr. Richard S. Miller
Office of Naval Research
Code 413
Arlington, VA 22217 | 10 | Mr. Donald L. Ball 1 Air Force Office of Scientific Research Directorate of Chemical Sciences Bolling Air Force Base Washington, D.C. 20332 | | Mr. David Siegel
Office of Naval Research
Code 260
Arlington, VA 22217 | 1 | Dr. John S. Wilkes, Jr. 1 FJSRL/NC USAF Academy, CO 80840 | | Dr. R.J. Marcus
Office of Naval Research
Western Office
1030 East Green Street | 1 | Dr. R.L. Lou 1 Aerojet Strategic Propulsion Co. P.O. Box 15699C Sacramento, CA 95813 | | Pasadena, CA 91106 Dr. Larry Peebles Office of Naval Research East Central Regional Office | 1 | Dr. V.J. Keenan 1
Anal-Syn Lab Inc.
P.O. Box 547
Paoli, PA 19301 | | 666 Summer Street, Bldg. 114-D
Boston, MA 02210
Ur. Phillip A. Miller
Office of Naval Research
San Francisco Area Office | 1 | Dr. Philip Howe 1 Army Ballistic Research Labs ARRADCOM Code DRDAR-BLT Aberdeen Proving Ground, MD 21005 | | One Hallidie Plaza, Suite 601
San Francisco, CA 94102 | | Mr. L.A. Watermeier 1 Army Ballistic Research Labs | | Mr. Otto K. Heiney
AFATL - DLDL
Elgin AFB, FL 32542 | 1 | ARRADCOM
Code DRDAR-BLI
Aberdeen Proving Ground, MD 21005 | | Mr. R. Geisler
ATTN: MKP/MS24
AFRPL
Edwards AFB, CA 93523 | 1 | Dr. W.W. Wharton 1 Attn: DRSMI-RKL Commander U.S. Army Missile Command Redstone Arsenal, AL 35898 | | | No. Copies | No. Copies | |---|------------|---| | Mr. R. Brown
Naval Air Systems Command
Code 330
Washington, D.C. 20361 | 1 | Dr. J. Schnur 1
Naval Research Lab.
Code 6510
Washington, D.C. 20375 | | Dr. H. Rosenwasser
Naval Air Systems Command
AIR-310C
Washington, D.C. 20360 | 1 | Mr. R. Beauregard 1
Naval Sea Systems Command
SEA 64E
Washington, D.C. 20362 | | Mr. B. Sobers
Naval Air Systems Command
Code D3P25
Washington, D.C. 20360 | 1 | Mr. G. Edwards 1
Naval Sea Systems Command
Code 62R3
Washington, D.C. 20362 | | Dr. L.R. Rothstein Assistant Director Naval Explosives Dev. Engineering Dept. Naval Weapons Station | 1 | Mr. John Boyle 1
Materials Branch
Naval Ship Engineering Center
Philadelphia, PA 19112 | | Yorktown, VA 23691 Dr. Lionel Dickinson Naval Explosive Ordnance Disposal Tech. Center Code D | 1 | Dr. H.G. Adolph 1 Naval Surface Weapons Center Code Rll White Oak Silver Spring, MD 20910 | | Indian Head, MD 20640 Mr. C.L. Adams Naval Ordnance Station Code PM4 | 1 | Dr. T.D. Austin 1
Naval Surface Weapons Center
Code R16
Indian Head, MD 20640 | | Indian Head, MD 20640 Mr. S. Mitchell Naval Ordnance Station Code 5253 Indian Head, MD 20640 | 1 | Dr. T. Hall 1 Code R-11 Naval Surface Weapons Center White Oak Laboratory Silver Spring, MD 20910 | | Dr. William Tolles
Dean of Research
Naval Postgraduate School
Monterey, CA 93940 | 1 | Mr. G.L. Mackenzie 1
Naval Surface Weapons Center
Code R101
Indian Head, MD 20640 | | Naval Research Lab.
Code 6100
Washington, D.C. 20375 | 1 | Dr. K.F. Mueller 1 Naval Surface Weapons Center Code R11 White Oak Silver Spring, MD 20910 | | | No. Copies | No. | Copies | |--|------------|--|--------| | Dr. R.G. Rhoades
Commander
Army Missile Command
DRSMI-R
Redstone Arsenal, AL 35898 | 1 | Dr. E.H. Debutts
Hercules Inc.
Baccus Works
P.O. Box 98
Magna, UT 84044 | 1 | | Dr. W.D. Stephens
Atlantic Research Corp.
Pine Ridge Plant
7511 Wellington Rd.
Gainesville, VA 22065 | 1 | Dr. James H. Thacher
Hercules Inc. Magna
Baccus Works
P.O. Box 98
Magna, UT 84044 | 1 | | Dr. A.W. Barrows
Ballistic Research Laboratory
USA ARRADCOM
DRDAR-BLP
Aberdeen Proving Ground, MD 21 | 1 005 | Mr. Theordore M. Gilliland
Johns Hopkins University APL
Chemical Propulsion Info. Ag
Johns Hopkins Road
Laurel, MD 20810 | | | Or. C.M. Frey
Chemical Systems Division
P.O. Box 358
Sunnyvale, CA 94086 | 1 | Dr. R. McGuire
Lawrence Livermore Laborator
University of California
Code L-324
Livermore, CA 94550 | ı
V | | Professor F. Rodriguez
Cornell University
School of Chemical Engineering
Olin Hall, Ithaca, N.Y. 14853 | | Dr. Jack Linsk
Lockheed Missiles & Space Co
P.O. Box 504 | 1 | | Defense Technical Information
Center
DTIC-DDA-2
Cameron Station
Alexandria, VA 22314 | 12 | Code Org. 83-10, Bldg. 154
Sunnyvale, CA 94088
Dr. B.G. Craig
Los Alamos National Lab
P.O. Box 1663
NSP/DOD, MS-245
Los Alamos, NM 87545 | 1 | | Dr. Rocco C. Musso Hercules Aerospace Division Hercules Incorporated Alleghany Ballistic Lab P.O. Box 210 Washington, D.C. 21502 | 1 | Dr. R.L. Rabie WX-2, MS-952 Los Alamos National Lab. P.O. Box 1663 Los Alamos NM 37545 | 1 | | Dr. Ronald L. Simmons Hercules Inc. Eglin AFATL/DLDL Eglin AFB. FL 32542 | 1 | Pros Alamos Scientific Lab.
P.O. Box 1663
Los Alamos, NM 37545 | 1 | | No. 3 | Conies | No. Conies | |---|--------|---| | Dr. J.F. Kincaid
Strategic Systems Project
Office
Department of the Navy | 1 | Dr. C.W. Vriesen Thiokol Elkton Division P.O. Box 241 Elkton, MD 21921 | | Room 901
Washington, D.C. 20376
Strategic Systems Project Office | | Dr. J.C. Hinshaw 1 Thiokol Masatch Division P.O. Box 524 Phidam City Utah 92402 | | Propursion Unit
Code SP2751
Decambent of the Navy
Washington, D.C. 20376 | | Brigham City, Utah 83402 U.S. Army Research Office 1 Chemical & Biological Sciences Division | | Mr. E.L. Throckmonton
Strategic Systems Project Office
Department of the Navy
Room 1048 | 1 | P.O. Box 12211
Research Triangle Park
NC 27709 | | Washington, D.C. 20376 Dr. D.A. Flanigan Thlokol | 1 | Dr. R.F. Walker 1 USA ARRADCOM DRDAR-LCE Dover, NJ 07801 | | Runtsville Division huntsville, Alabama 35807 Pr. G.F. Mangum | 1 | Dr. T. Sinden 1 Munitions Directorate Propellants and Explosives | | Thirkol Corporation Funtsville Division Funtsville, Alabana 35897 | | Defence Equipment Staff
British Embassy
3100 Massachusetls Ave.
Washington, D.C. 20003 | | Mr. E.S. Sutton Thickol Corporation Elkton Division P.O. Box 241 | 1 | LTC B. Loving 1
AFROL/LK
Edwards AFB, CA 93523 | | Elkton, MD 21921 Dr. G. Thompson Thickel | 1 | Professor Alan N. Gent 1 Institute of Polymer Science University of Akron Akron, OH 44325 | | Masatch Division
MS 940 P.O. Box 524
Exigham City, UT 84302 | | Mr. J. M. Frankle 1
Army Ballistic Research Labs
ARRADCOM | | On. T.F. Davidson Teamnical Director Thickel Componation Government Systems Group P.O. Box 5255 Odgen, Utan 84409 | 1 | Code DRDAR-BLI
Aberdeen Proving Ground, MD 21005 | | No. | Copies | No. Copies | |--|--------|--| | Mr. J. Murrin
Naval Sea Systems Command
Code 62R2
Washington, D.C. 20362 | 1 | Dr. A. Nielsen 1
Naval Weapons Center
Code 385
China Lake, CA 93555 | | Dr. D.J. Pastine
Naval Surface Weapons Cneter
Code RO4
White Oak
Silver Spring, MD 20910 | 1 | Dr. R. Reed, Jr. 1 Naval Weapons Center Code 388 China Lake, CA 93555 | | Mr. L. Roslund
Naval Surface Weapons Center
Code R122
White Oak, Silver Spring | 1 | Dr. L. Smith 1
Naval Weapons Center
Code 3205
China Lake, CA 93555 | | MD 20910
Mr. M. Stosz
Naval Surface Weapons Center | 1 | Dr. B. Douda Naval Weapons Support Center Code 5042 Crane, Indiana 47522 | | Code R121
White Oak
Silver Spring, MD 20910 | | Dr. A. Faulstich 1
Chief of Naval Technology
MAT Code 0716 | | Dr. E. Zimmet Naval Surface Weapons Center Code R13 White Oak Silver Spring, MD 20910 | 1 | Washington, D.C. 20360 LCDR J. Walker l Chief of Naval Material Office of Naval Technology | | Dr. D. R. Derr
Naval Weapons Center | 1 | MAT, Code 0712
Washington, D.C. 20360 | | Code 388 China Lake, CA 93555 Mr. Lee N. Gilbert | 1 | Mr. Joe McCartney 1
Naval Ocean Systems Center
San Diego, CA 92152 | | Naval Weapons Center
Code 3205
China Lake, CA 93555 | | Dr. S. Yamamoto 1
Marine Sciences Division
Naval Ocean Systems Center
San Diego, CA 91232 | | Dr. E. Martin
Naval Weapons Center
Code 3858
China Lake, CA 93555 | 1 | Dr. G. Bosmajian 1 Applied Chemistry Division Naval Ship Research & Development | | Mr. R. McCarten
Naval Weapons Center | 1 | Center Annapolis, MD 21401 Dr. H. Shuev 1 | | Code 3272
China Lake, CA 93555 | | Dr. H. Shuey 1
Rohn and Haas Company
Huntsville, Alabama 35801 | No. Copies ### DISTRIBUTION LIST No. Copies | | | | | |--|---|--|-------------| | Dr. Ingo W. May
Army Ballistic Research Labs
ARRADCOM
Code DRDAR-BLI
Aberdeen Proving Ground, MD 21005 | 1 | Dr. J. P. Marshall
Dept. 52-35, Bldg. 204/2
Lockheed Missile & Space Co.
3251 Hanover Street
Palo Alto, CA 94304 | 1 | | Professor N.W. Tschoegl
California Institute of Tech
Dept. of Chemical Engineering
Pasadena, CA 91125 | 1 | Ms. Joan L. Janney
Los Alamos National Lab
Mail Stop 920
Los Alamos, NM 87545 | 1 | | Professor M.D. Nicol
University of California
Dept. of Chemistry
405 Hilgard Avenue | 1 | Dr. J. M. Walsh
Los Alamos Scientific Lab
Los Alamos, NM 87545 | 1 | | Los Angeles, CA 90024 Professor A. G. Evans | 1 | Professor R. W. Armstrong
Univ. of Maryland
Department of Mechanical Eng | 1 | | University of California
Berkeley, CA 94720 | , | College Park, MD 20742 Prof. Richard A. Reinhardt | 1 | | Professor T. Litovitz Catholic Univ. of America Physics Department 520 Michigan Ave., N.E. | 1 | Naval Postgraduate School
Physics & Chemistry Dept.
Monterey, CA 93940 | | | Washington, D.C. 20017 Professor W. G. Knauss | 1 | Dr. R. Bernecker
Naval Surface Weapons Center
Code R13 | | | Graduate Aeronautical Lab
California Institute of Tech.
Pasadena, CA 91125 | | White Oak, Silver Spring, MD Dr. M. J. Kamlet Naval Surface Weapons Center | 1 | | Professor Edward Price
Georgia Institute of Tech.
School of Aerospace Engin. | 1 | Code R11 White Oak, Silver Spring, MD | | | Atlanta, Georgia 30332
Dr. Kenneth O. Hartman | 1 | Professor J. D. Achenbach
Northwestern University
Dept. of Civil Engineering | 1 | | Hercules Aerospace Division Hercules Incorporated P.O. Box 210 Cumberland, MD 21502 | | Evanston, IL 60201 Dr. N. L. Basdekas Office of Naval Research | 1 | | Dr. Thor L. Smith
IBM Research Lab | 1 | Mechanics Program, Code 432
Arlington, VA 22217 | • | | D42.282
San Jose, CA 95193 | | Professor Kenneth Kuo
Pennsylvania State Univ.
Dept. of Mechanical Engineer
University Park, PA 16802 | 1
ing | | | No. Copies | No. Copies | |--|------------|------------| | Dr. S. Sheffield
Sandia Laboratories
Division 2513
P.O. Box 5800
Albuquerque, NM 87185 | 1 | | | Dr. M. Farber
Space Sciences, Inc.
135 Maple Avenue
Monrovia, CA 91016 | 1 | | | Dr. Y. M. Gupta
SRI International
333 Ravenswood AVenue
Menlo Park, CA 94025 | 1 | | | Mr. M. Hill
SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025 | 1 | | | Professor Richard A. Schapery
Texas A&M Univ.
Dept of Civil Engineering
College Station, TX 77843 | 1 | | | Dr. Stephen Swanson
Univ. of Utah
Dept. of Mech. & Industrial
Engineering
MEB 3008
Salt Lake City, UT 84112 | 1 | | | Mr. J. D. Byrd
Thiokol Corp. Huntsville
Huntsville Div.
Huntsville, AL 35807 | 1 | | | Professor G. D. Duvall
Washington State University
Dept. of Physics
Pullman, MA 99163 | 1 | | | Prof. T. Dickinson
Washington State University
Dept. of Physics
Pullman, WA 99163 | 1 | |